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We propose a model-driven methodology aimed to shed light on complex disorders. Our approach
enables exploring shared etiologies of comorbid diseases at the molecular pathway level. The method,
Comparative Comorbidities Simulation (CCS), uses stochastic Petri net simulation for examining the phe-
notypic effects of perturbation of a network known to be involved in comorbidities to predict new roles
for mutations in comorbid conditions. To demonstrate the utility of our novel methodology, we investi-
gated the molecular convergence of autism spectrum disorder (ASD) and inflammatory bowel disease
(IBD) on the autophagy pathway. In addition to validation by domain experts, we used formal analyses
to demonstrate the model’s self-consistency. We then used CCS to compare the effects of loss of function
(LoF) mutations previously implicated in either ASD or IBD on the autophagy pathway. CCS identified
similar dynamic consequences of these mutations in the autophagy pathway. Our method suggests that
two LoF mutations previously implicated in IBD may contribute to ASD, and one ASD-implicated LoF
mutation may play a role in IBD. Future targeted genomic or functional studies could be designed to
directly test these predictions.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Understanding the mechanisms underlying complex diseases is
a central challenge of modern biomedical research. Comorbid dis-
eases, i.e., those that co-occur in individuals or families, may point
to partially overlapping etiologies.

Recent work demonstrates that comorbidity is significantly
related to genetic similarity [1]. Melamed et al. [1] proposed a sta-
tistical approach to discover new cancer genes based on genetic
similarity of comorbid pairs of Mendelian disease and cancers with
shared cellular processes. Network-based approaches [e.g., 2,3]
used large scale protein interaction networks to explore the con-
vergence of protein interaction networks between comorbid
diseases.

Toward the goal of utilizing comorbidities to identify novel
complex disease genes, we developed a new approach – Compara-
tive Comorbidities Simulation (CCS). CCS uses stochastic Petri net
(SPN) simulation for examining the actual and potential pheno-
typic effects of perturbation of a network known to be involved
in comorbidities to predict new roles for genes in the comorbid
conditions. SPN is a mathematical formalism [4,5] where stochastic
time-delays are assigned to each system event (e.g., enzymatic
reaction) during simulation, enabling generation of dynamic
behavior. We applied our approach to explore the molecular con-
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vergence of autism spectrum disorder and inflammatory bowel
disorder.

In addition, our model-driven approach aims to advance the
understanding of similar mechanisms underlying comorbidities
and to generate predictions that may help to identify genes for
testing in order to further decipher the pathophysiology of comor-
bid diseases. We used CCS to examine the phenotypic effects of
perturbation of a network that represents a biological process/-
pathway known to be involved in both comorbidities. We propose
that comparing the simulated behavior of perturbations corre-
sponding to susceptible genes known to be associated with the
comorbidities could uncover additional clues regarding their
mechanisms of action.

CCS includes three steps, as shown in Fig. 1. First, we identify a
pair of comorbid complex diseases and their candidate-shared pro-
cesses/pathways are examined.

In the second step, we create a model of the biological process,
including the disease-associated genes, using SPN. Our model is
validated by domain experts, as well as by formal verification of
desired invariants that should hold for biological pathways
[4,5,6]. We further validate that simulating loss of function (LoF)
mutations of interest complies with known experimental findings.

The third step includes comparing the in silico results and gen-
erating predictions of potential involvement of risk genes that are
known to be related to the selected pathway. Such predictions
could focus the research on new target genes to be tested to deter-
mine if they induce the comorbid disease.

We demonstrated our methodology on ASD and its IBD comor-
bidity. We have chosen these diseases because they are highly her-
itable comorbid conditions of mostly unknown etiologies, whose
comorbidity may hint at their underlying molecular alterations.
Autophagy, which was independently implicated in the genetic
landscape of ASD and IBD, was chosen during the first step of our
methodology to be the case in point (i.e., PC).

Autophagy [7–9] is an evolutionarily conserved process in
eukaryotes in which a double-membraned vesicle is formed in
the cytosol and encloses its cargo, i.e., cytosolic material such as
damaged organelles, protein aggregates and pathogens aimed for
degradation. During steady-state conditions, this process main-
tains intracellular homeostasis in the various tissues through the
elimination of damaged or old organelles and the turnover of
long-lived proteins and protein aggregates. During stress condi-
tions such as nutrient starvation, hypoxia, ER stress, oxidative
stress and pathogen infection, autophagy can be upregulated,
resulting in adaptation and cell survival. Neuronal autophagy is
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Fig. 1. CCS: a model-driven methodology to explore common molecular mechanisms
comorbidities.
essential for development and neuronal signaling due to its impor-
tant role in degrading toxic proteins and damaged organelles [7].

Autophagy was formerly considered to be a nonselective bulk
degradation pathway; however, more recently selective autophagy
processes have been identified. Selectivity of autophagy is con-
trolled by autophagy receptors to specifically degrade intracellular
ubiquitinated aggregates, bacteria, specific organelles or nucleic
acids [10]. For example, the autophagy process plays a crucial role
in immunity and inflammation, e.g., during cytosolic pathogenic
degradation [11]. In addition, it is recognized that defective autop-
hagy plays a significant role in human pathologies, including can-
cer, neurodegeneration, and infectious diseases [12].

The paper is structured as follows: the remainder of this section
provides an overview of the target complex disease ASD, its comor-
bidity IBD and of SPN. Section 2 presents our methodology, includ-
ing (1) our approach for translating literature-based knowledge
into the SPN formalism, (2) the validation methods used and their
significance, (3) the approach for the simulation’s design, and (4)
the way to make predictions based on different types of simulation
results. Section 3 presents our results and predictions and demon-
strates the feasibility of our CCS method. Section 4 concludes the
paper.

1.1. The genetic-phenotypic relation of ASD/IBD

Autism spectrum disorder (ASD) is a neurodevelopmental disor-
der characterized by impairments in social interaction, repetitive
behaviors and restricted interests [13] and affects about 1% of
the population [14]. ASD is highly heritable [15,16] presenting an
extremely heterogeneous genetic architecture [17], which con-
nects to phenotype [18]. Rare SNPs (single-nucleotide polymor-
phisms)—changes in a single nucleotide and CNVs (Copy Number
Variations) defined [19] as DNA segments that are 1 kb or larger
in size present at variable copy number in comparison with a ref-
erence genome, that include insertion, deletion, duplication or
other complex variation in the DNA [19]—have been frequently
implicated in ASD [15].

ASD genetics that were recently related to the autophagy pro-
cess include [15] small (<30 kb) rare deletions of the ATG7 autop-
hagy gene and rare exonic CNV in the CALCOCO2/NDP52
autophagy receptor. In support of a role for the ATG7 gene and
autophagy dysregulation in ASD etiology, a recent study [20]
showed that a mouse model with cortical neuron-specific deletion
of the autophagy gene Atg7 (Atg7CKO mice) had decreased pruning
of dendritic spines and ASD-like behavioral symptoms.
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While ASD is considered to be a disorder of the developing
brain, new evidence shows that comorbidities that affect other
organs are frequently observed in patients with ASD [21,22]. These
ASD-related comorbidities were suggested to cluster into four dis-
tinct groups [21] characterized by seizures, multisystem disorders
including gastrointestinal disorders (GI), auditory disorders and
infections, and psychiatric disorders. GI and IBD were shown [22]
in over 14,000 autistic patients to be higher than in the general
population (11.74% vs. 4.5% and 0.83% vs. 0.54% respectively).
IBD is a chronic inflammatory disease of the digestive system that
includes Crohn’s disease and ulcerative colitis. Further research has
shown IBD to occur at a higher rate in individuals with ASD [22–
25] than in healthy cohorts.

The link between autophagy and IBD arose from genome-wide
association studies (GWAS) that revealed several risk loci and SNPs
in genes that are involved in autophagy [reviewed in 26] such as
ATG16L1 [27–31], IRGM [27–29,32,33], NOD2 [27], ULK1 [34],
ATG2A [35], GABARAPL1 [35] and NDP52/CALCOCO2 [36,37]. A
large cohort of 3451 individuals [27] re-confirmed IRGM, NOD2
and ATG16L1 to be susceptible IBD genes that correlate to
phenotype.

The functions of these specific autophagy-related risk loci were
extensively studied in IBD. For example, the IBD-susceptible
ATG16L1T300A risk locus in knock-in mice was shown to reduce
autophagy in multiple cell types [38]. Deletion polymorphisms
upstream of IRGM associated with Crohn’s disease resulted in
altered IRGM expression [33]. Cells homozygous for the Crohn’s
disease-associated NOD2 frameshift mutation (NOD2 p.L1007insC
polymorphism) were defective in recruiting ATG16L1 to the
plasma membrane and had a profound effect on the autophagic
response triggered by intracellular bacterial infection [39].

Given that the process of autophagy is important in neuronal
cellular cell survival [7] and its dysregulation is known to be impli-
cated in a defective innate immune response in IBD [40], could the
enrichment of IBD and ASD point to a subset of patients with a dis-
ordered autophagic system in common?

1.2. Stochastic Petri nets

A Petri net [4–6] is a discrete event simulation approach devel-
oped for system representation that enables concurrency and syn-
chronization properties. This established formal and graphical
technique abstracts systems dynamics with a graph composed of
arcs and nodes, with tokens moving between the nodes. The struc-
ture of a Petri net is a directed bipartite graph with two types of
nodes: places, which represent conditions (e.g., resources such as
proteins), and transitions, which correspond to events that can
change the state of the resources (e.g., molecular functions). A tran-
sition (an event) is connected to its input and output places with a
weighted arc, whose default is 1. Input and output places represent
the pre-conditions (e.g., substrates of an enzymatic reaction) and
post-conditions (e.g., products) of the transition, respectively.
Places are graphically drawn as circles, and transitions as bars or
boxes. The state of the system (called marking) is represented by
tokens that are positioned in the places; one place may hold mul-
tiple tokens. Thus, different assignments of tokens to places induce
different states of the system (e.g., number of molecules represent-
ing a protein in a certain activation state).

Transitions change the state of the system by firing (i.e., mov-
ing) tokens along arcs. A transition t is enabled if its preconditions
are satisfied, i.e., the number of tokens in each of its input places,
pinput, is greater than or equal to the weight of the arc between
pinput and t. During simulation, one of the enabled transitions fires.
When a transition t fires, it removes tokens from pinput and adds
tokens to each output place poutput of t according to the weights
of the arcs.
A stochastic Petri net (SPN) [4–6] incorporates the notion of
time into a Petri net and allows for the representation of rates of
biological reactions and processes. A transition is assigned with
an exponentially-distributed random variable with a parameter
that defines the firing rate, i.e., the delay between the enabling
and the firing of the transition. For stochastic simulations that
determine when and which transition will be firing next, the most
widely used SPN simulation is based on the well-established Gille-
spie algorithm [41]. In this instance, the SPN simulation is based on
defining number of tokens (e.g., molecules) at different places and
stochastic rates of transition firing delays (e.g., molecular function
rates), which must be set in advance.

Petri nets are well-suited for modeling the concurrent behavior
of biochemical networks and have been used [42,5] to represent
various biological pathways such as metabolic pathways and pro-
tein synthesis. Petri nets are appropriate for modeling biological
systems qualitatively, when the kinetic coefficients and the flux
rates are unknown [4,5]. The non-deterministic feature of stochas-
tic Petri nets is used to cope with this incomplete data and to sim-
ulate the biological system at hand [43].

Various tools support the Petri nets formalism in model valida-
tion, verification and analysis (e.g., mutation analysis). Petri nets
analysis tools enable static analysis of the Petri net topology,
dynamic simulation-based analysis and model checking tech-
niques aimed for model verification [4–6].

P-invariants may be used to validate mass conservation by
identifying a set of network places in which the total amount of
tokens is bounded and remains constant. This constrains the sum
of tokens belonging to related components or the different states
of a component that must be preserved to a constant. P-
invariants are calculated by solving the following system of linear
equations: CT � y = 0, whereby y is a p-invariant. C = [cij]n�m, is an
incidence matrix, where n is a number of places, m is a number
of transitions. An entry cij in the incidence matrix C, is an integer
number equal to the difference between the numbers of tokens
present in place pi (i = 1,2, . . . ,n, n is the number of net places)
before and after transition tj (for j = 1,2, . . . ,m, while m is number
of net transitions) is fired. A Petri net covered by P-invariants
(CPI) is a characteristic of a net where each place belongs to a P-
invariant. A CPI net is a bounded net [4]. This is a desired property
for modeling biological pathways where the total mass of mole-
cules transformed throughout the pathway needs to stay bounded
and conserved.

A T-invariant is a vector of integers corresponding to transitions
that may fire to reproduce a given initial marking so that it detects
cyclical behavior and may represent a biological pathway. Like P-
invariants, T-invariants are calculated by solving the following sys-
tem of linear equations: C � x = 0 whereby x is a T-invariant, i.e., a
vector of integers corresponding to transitions. A CTI [4,6] is a
property of a network covered by T-invariants where each transi-
tion belongs to a support of a T-invariant. A CTI is an important
property for the validation of a biological Petri net and can be used
to validate unbounded nets. The CTI property examines that every
transition, e.g., molecular function, in the net occurs in some sub-
process and contributes to the steady behavior of the system. If the
net does not fulfill the CTI property, the excluded transitions
should be examined as a possible cause of tokens overflow in the
net.

In addition to the static invariant analysis, simulating the SPN
can be used to investigate the degree of process utilization as well
as to analyze the states that the system reaches. Such dynamic
analysis may be used to detect healthy conditions where equilib-
rium is reached or to detect disease conditions where oscillation
occurs.
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2. Methods

2.1. Step 1. Identifying genetic process-level convergence (PC) of
comorbidities

First, a pair of comorbid complex diseases is identified and
candidate-shared pathways are examined. We note that this step
can be semi-automated. A fully automated process could be insuf-
ficient because, from our experience, some crucial data may be
missed. For example, our attempt to automatically derive
disease-related genes from known databases (e.g., MalaCards, a
human disease database, http://www.malacards.org/, and SFARI,
https://sfari.org/) resulted in missing one of the pivotal genes
(i.e., ATG7) presented in this work.
2.2. Step 2. Model construction, simulation, and validation

Our SPN model was constructed manually based on the biolog-
ical literature regarding the core autophagy mechanism [reviewed
in 7–9] as presented in Section 3.2.1. We then extended the model
with further mechanisms, presented with their references in
Table 1 (column 1), that were required to model the ASD/IBD risk
genes (e.g., ULK1, NOD2, IRGM, NDP52, GABARAPL1, CALCOCO2).
The model was validated by domain experts who are co-authors
(IK, AD, RS) of this paper.

Since the knowledge was incomplete, we included two conjec-
tures in the model. One of the conjectures was related to IRGM,
ATG16L1 and NOD2 that were shown to interact [44], while
NOD1 and NOD2 was shown [39] to recruit ATG16L1 to the plasma
membrane at bacterial entry. Since the temporal aspects of IRGM,
ATG16L1 and NOD2 interactions are unknown (e.g., ‘‘does NOD2
bind IRGM and ATG16L1 after/before the autophagosome is for-
med?”), and ATG16L1 is known to be involved in autophagosome
elongation phase, we conjectured that IRGM and NOD2 are
required after autophagosome formation. Additionally, we mod-
eled that GABARAPs and LC3 subfamilies are both required in
recruiting selective receptors [reviewed in 45].

We used the Gene Ontology (GO) Consortium enrichment anal-
ysis tool (http://geneontology.org/) to evaluate the coverage of our
model. Our model includes 37 participating genes/proteins and
complexes. We mapped these genes to 44 human genes (see list
in supplemental Table S5). Of these genes, 40 were mapped to
the autophagy process. Conversely, using the GO annotation tool
(http://www.ebi.ac.uk/QuickGO/), direct annotation of autophagy
(GO: 0006914) includes 177 genes for humans (filtered with GO
Identifier = ‘‘exact match” and Taxon = ‘‘human”) and 141 genes
for mice (filtered with GO Identifier = ‘‘exact match” and
Taxon = ‘‘mouse”). Thus our model of the core autophagic machin-
ery covers more than 20% of human direct autophagy genes/pro-
teins as annotated by GO.

The Snoopy tool (Snoopy 2, version 1.13) [46] was used to con-
struct and simulate the SPN model.

We used hierarchical structuring for managing the large-scale
network by utilizing macro transitions. Macro transitions (drawn
as two centric rectangles—see two such transitions in Fig. 3, top
middle and bottom middle) permit us to manage the complexity
of the net by using a scaling mechanism to define place-bordered
subnets, i.e., subnets having only places as an interface to the
supernet.

For referring to the same place in different subnets we used log-
ical nodes. These are places (colored gray) that are logically identi-
cal whenever used through the network’s distinct parts.

We used input transitions—transitions without input places
that are therefore continuously enabled—to initiate the places in
the net with tokens; and we used output transitions—transitions
without output places that consume tokens and do not produce
any tokens when fired—for modeling degradation of the modeled
molecule/process. By default, the weights of all arcs equal one.
2.2.1. Structural model validation
A network that is re-initiated periodically by transitions in a

recurring manner, is unbounded i.e., there is no finite upper bound
on the total token number in the net. Such an unbounded net was
suggested [47] to be valid by using the CTI feature, but does not
obey the CPI (covered by p-invariants) feature which validates
bounded nets. Thus in our model, CTI analysis validates that the
initial state of the net can be restored and all tokens will be con-
sumed after each execution cycle of the autophagy process.

The Charlie analysis tool (Charlie, version v2.0.194.229) [48]
was used to perform structural net analysis. We refined our SPN
model until it was fully covered by 1 minimal T-invariant (CTI),
such that it represented a full pathway. Minimal T-invariants can-
not be further decomposed into smaller T-invariants.

There are five bounded subnets in the net, which correspond to
mass conservation (e.g., Beclin 1 to BCL2 – BCLXL complex assem-
bly and disassembly) or recurring states of a molecule (e.g., activa-
tion and deactivation of ULK1). These subnets were validated to
form P-invariants (presented in supplemental Table S3) and need
to be initiated with a token.
2.2.2. Model simulation
We used a stochastic simulation to (1) further validate the

model to comply with known experiments and (2) to compare
the dynamic behavior over time as influenced by various LoF muta-
tions. The firing time for a transition, e.g., an enzymatic reaction, is
represented by a negative exponential distribution with the
parameter k. Due to the lack of more specific information, we
assumed equal rates for all reactions, with the parameter k ¼ 1.
These firing rates allow simulating the number of tokens in net
places over time, which is measured in simulation time units.
Therefore, our simulation is semi-quantitative because it does
not relate to minutes or seconds. We defined the simulation inter-
val to include 70 units, which was enough to show the trend (of
these, we present an interval ending at 50 simulation time units
in Fig. 6). We recorded 500 time points at this interval. Input/out-
put transitions were calibrated and determined with k ¼ 0:5 and
k ¼ 0:25 respectively in order to eliminate overflow of tokens in
the net.

For all places in the net that represent the protein products of
genes, one token represents a single molecule. Places are initiated
during simulation by input transitions as explained above. Here
too, the simulation is semi-quantitative because the number of
tokens does not precisely reflect known cellular concentrations of
molecules.

We analyzed the kinetic behavior of phagophores, autophago-
somes, autolysosomes and the degraded cargo. These were chosen
since they represent the products of autophagy stages and can be
compared against experimental observations. For each product,
such as autophagosomes, we count and show the quantity of the
product at each simulation time point by subtracting the total
number of products created and decayed. We summed up the
number of tokens in the relevant net place (e.g., Autophago-
some_Formed) over time and subtracted the number of degraded
products represented by the AutophagosomeDegraded transition.
These places are highlighted in Figs. 3–5.

Each LoF mutation was simulated independently and repeated
1000 times. The Snoopy 2 Petri net tool was used to show graphs
of the averaged number of tokens in certain places of the net cor-
responding to autophagy stages as a function of time, representing
the kinetic behavior.

http://www.malacards.org/
https://sfari.org/
http://geneontology.org/
http://www.ebi.ac.uk/QuickGO/


Table 1
Dynamic model validation. Comparison of in silico and experimental observations regarding ASD/IBD risk genes.

Risk gene and their modeled function Disease Observed effects of gene deletion and specific
risk loci on autophagy and disease phenotype
(mutated genes are highlighted in ‘‘Italic”
font)

In silico deletion effect on autophagy In silico
match
known
observation?
(+/�)

ATG7.
Mediates between ATG16L1 complex and
LC3-II complex during autophagosome
elongation [60 and as reviewed in 7–9]

ASD A mouse model of Atg7 deletion [60] showed
that Atg7 is essential for autophagosome
formation and degradation of proteins and
organelles. Atg7 deficiency led to the appear-
ance of concentric membranous structure and
accumulation of ubiquitin-positive aggre-
gates

Phagophores and cargo accumulation, and
reduced amounts of autophagosomes and
autolysosomes (see Fig. 6B)

+

Observed effect on phenotype: Mice with
cortical neuron–specific deletion of Atg7
(Atg7CKO mice) had decreased pruning of
dendritic spines and ASD-like behavioral
symptoms. Deletion of Atg7 in cultured
primary hippocampal neurons also reduced
spine pruning [20]

ATG16L1.
Conjugates to ATG5, ATG12 and LC3-II and
participates in autophagosome elongation
[61 and as reviewed in 7–9]

IBD Atg16L1-deficient cells resulted in severely
impaired autophagosome formation and
degradation of long-lived proteins [61]

Phagophores accumulation, reduced levels of
autophagosome, autolysosomes and
accumulation of cargo (see Fig. 6C)

+

Observed risk locus effects on phenotype:
T300A knock-in mice exhibit morphological
defects in Paneth and goblet cells. Selective
autophagy is reduced in multiple cell types
from T300A knock-down in mice compared
with WT mice. Moreover, Atg16L1T300A is
associated with decreased antibacterial
autophagy [38]

NOD52/CALCOCO2.
A selective autophagy receptor that
participates in immunity- autophagy that
controls intracellular pathogens and binds
the LC3 family in order to transport cargo
into the autophagosomes before they bind
to lysosomes [59]

IBD/ASD NDP52-deficient autophagy of salmonella
results in accumulation of autophagosomes
[59]. NDP52-impaired cells facilitated bacte-
rial proliferation and increased the number of
cells containing ubiquitin-coated salmonella
[62]

Phagophore and autophagosome
accumulation, autolysosome reduction,
decreased cargo degradation (pathogens) and
thus increase in pathogens that were not
degraded (see Fig. 6D)

+

IRGM.
IRGM is essential for autophagy induction
via associating with ULK1 and IRGM [44]

IBD IRGM knock-down in monocytic cells reduced
the total amount of ULK1 and ATG14L,
autophagy initiation proteins, and decreased
the levels of the activated form of AMPK
phosphorylated at Thr-172, which is linked to
autophagy induction [44]

Reduced phagophores, autophagosomes and
autolysosomes
Reduced degraded cargo (see Fig. 6E and
supplemental Fig. S1B)

+

Observed risk locus effects: Deletion
polymorphism upstream of IRGM associated
Crohn’s disease were linked with altered
IRGM expression [33]

NOD2.
NOD2 is essential for autophagy induction
via enhancing ULK1 and IRGM binding [44]

IBD NOD2 enhances IRGM interactions with ULK1
and Beclin 1 for autophagy induction [44]

Reduced phagophores (autophagy induction),
autophagosomes and autolysosomes
Reduced degraded cargo (increased
undegraded bacteria) (see Fig. 6F and
supplemental Fig. S1A)

+

Observed risk loci effects on phenotype:
Dendritic cells (DCs) from individuals with
Crohn’s disease expressing Crohn’s disease—
associated NOD2 risk variants (1007fsinsC,
R702 W or G908R) are defective in autophagy
induction, bacterial trafficking and antigen
presentation [63].
Cells homozygous for the Crohn’s disease-
associated NOD2 frameshift mutation (NOD2
L1007insC polymorphism) were defective in
recruiting ATG16L1 to the plasmamembrane,
andwrapping of invading bacteria by
autophagosomes was impaired. It had a
profound effect on the autophagic response
triggered by intracellular bacterial infection
[39].

ULK1.
ULK1 is critical to induce the autophagic
response, by activating ATG9, Ambra1 and
PIK3C3 complex translocation to ER, Beclin
1 activation and ATG13 activation [64,65,
as reviewed in 7–9]

IBD The loss of ULK1 and ULK2 blocks nutrient
deprivation-induced autophagy in mouse
embryonic fibroblasts [65]. ULK1 is critical to
induce the autophagic response of cerebellar
granule neurons [65]

Reduced phagophores (autophagy induction),
autophagosomes and autolysosomes
Reduced and degraded cargo (see Fig. 6G)

+

Cells expressing the phosphorylation
defective mutant, Ulk1 S317/777A, were deficient
in autophagosome/autolysosome formation
[64].

370 J. Somekh et al. / Journal of Biomedical Informatics 63 (2016) 366–378



Table 1 (continued)

Risk gene and their modeled function Disease Observed effects of gene deletion and specific
risk loci on autophagy and disease phenotype
(mutated genes are highlighted in ‘‘Italic”
font)

In silico deletion effect on autophagy In silico
match
known
observation?
(+/�)

GABARAPL1.
GABARAPs subfamily functions as LC3
subfamily [reviewed in 45]
GABARAPs subfamily involved in closure
of autophagosome after they are elongated
[57]

IBD GABARAPs are localized to starvation‐induced
autophagosomes [68]. GABARAPs were
shown to participate in a later stage of
autophagosome formation, after elongation.
Knocked-down GABARAPs affect the Atg5 and
Atg16L1 structures, which appeared signifi-
cantly larger (autophagosomes were formed)
than in control cells [57]. Selective removal
[57] of the GABARAPs subfamily leads to
accumulation of open autophagic mem-
branes, implying that GABARAPs are involved
in the regulation of autophagosome matura-
tion, which includes closure and sealing pro-
cesses of the autophagosome

Phagophore and autophagosome
accumulation, autolysosome reduction,
decreased cargo degradation (see Fig. 6H)

+

ATG2A.
ATG2A/B are recruited with WIPI proteins
to form Atg2-WIPIs complex which binds
the PI(3)P, before autophagosome
elongation and before the phagophore is
formed [66,67, as reviewed in 7–9]

IBD Silencing of Atg2A and Atg2B causes a block in
autophagic flux (LC3-II decrease—meaning a
decreased autophagosome elongation, and
p62 accumulation—meaning a decreased
maturation to autolysosomes) and
accumulation of unclosed autophagosome-
related membranes [66]

Reduced Phagophores, autophagosomes,
autolysosomes and degraded cargo (see
Fig. 6I)

+

ATG2A/B are suggested to be recruited with
WIPI proteins to form Atg2-WIPIs complex,
which binds the PI(3)P, during autophagy
initiation [66,67]

J. Somekh et al. / Journal of Biomedical Informatics 63 (2016) 366–378 371
2.2.3. Dynamic model validation
We executed the model after initializing it to reflect the setting

of known experiments from the literature, and then determined
whether our results comply with the published experimental
results.
2.2.4. Modeling mutations
We analyzed the effects of mutations of ASD and IBD risk genes

on our autophagy model. Our model granularity includes muta-
tions at the gene level for disease risk genes characterized by var-
ious SNPs, rather than mutations of specific domains or alleles. The
modeled mutations mimic partial loss of function mutations, i.e.,
gene product having less function. Partial loss of function was
modeled as decrease in the quantities (number of tokens repre-
senting the gene) of the perturbed protein during simulation. To
do so, we increased the weight of the arcs emanating from the
place representing the protein. Using the simulation, we calibrated
the weight of the arc until we received a significant effect on the
system. We used a weight of 10 instead the default of 1 (a reduc-
tion to 10%) for all mutations.

We used the same model of the core autophagy mechanism to
simulate both intestinal and neuronal cells because core autophagy
is an evolutionarily-conserved mechanism that is thought to be
similar for different cells types in general and specifically neuronal
autophagy, as reviewed in [7].

We note that little is known about the phenotypic effects on
autophagy of risk loci found in ASD and IBD. Nevertheless, the
human polymorphism in ATG16L1 (rs2241880) that was linked
to IBD was tested [38] by a knock-in mouse model expressing
the Atg16L1T300A variant resulting in decreased levels of full-
length Atg16LlT300A proteins. In addition, Crohn’s related deletions
upstream of the IRGM gene (SNP rs13361189) were associated
with altered IRGM expression [33]. Based on these findings, we
mimic ASD/IBD genetic risk as decreased expression of the suscep-
tible gene.
2.2.5. Availability of code for reproducibility
The model in supplemental SM1 allows full reproducibility of

results.
2.3. Step 3. Generating predictions based on simulation results

We detected similar phenotypic effects by hierarchically clus-
tering the eight kinetic plots, i.e., dynamic behavior over simula-
tion time, of all simulations corresponding to the different
perturbed risk genes. We recorded the accumulation of tokens in
the three-autophagy vesicular stages—phagophores, autophago-
somes, autolysosomes—and degraded cargo.

We stored the in silico kinetic results for each mutated gene in a
vector. We then computed the Euclidian distance between these
eight vectors and hierarchically clustered them. We used the clus-
tering to predict similar groups of genes. We used the R software
system for the computations.

As the network is not homogeneous with respect to its granu-
larity, it would not be correct to test the distance between such
vectors consisting of simulations of all net places. For example in
comparing simulations of all net places, one may erroneously
detect greater effect for genes with more detailed knowledge,
meaning more net places affected by its perturbation.

The rationale for our comparative approach is that for an inher-
ited mutation, the same gene in the same individual may affect
autophagy in the same way but in different tissues, resulting in
two distinct comorbidities. We detect such genes by comparing
their phenotype, that is, the effect on autophagy products quanti-
ties over time, to be similar to the phenotype of genes known to
be related to the comorbid disease. If particular kinetics were
observed in gene1 of disease1 and in gene2 of disease2, then per-
haps gene2 could also cause this kinetic behavior that is typical
for the manifestation of disease1 in the tissue of disease1. There-
fore, if two independent genes are clustered together, we conjec-
ture that each such gene may have a similar effect on the
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comorbid tissue inducing the comorbid disease. Based on this clus-
tering of model simulations, we suggest switching these identified
genes between the diseases.
3. Results

3.1. Step 1. Selection of comorbidities and common process

ASD and its IBD comorbidity were chosen as a case in point.
From a search of the literature, we found the common genetic
architecture of ASD and IBD to converge at the pathway level of
autophagy. This does not preclude other convergences, which we
did not explore here.
3.2. Step 2. Autophagy model

3.2.1. The biology of autophagy
During the initiation of autophagy, the vesicle that starts form-

ing is called a phagophore. During elongation, the phagophore
forms a double membrane vesicle known as an autophagosome.
The autophagosome later fuses with the lysosome to form an
autolysosome, where its content is degraded. Autophagy-related
(Atg) proteins function in multiprotein complexes that are
involved in several continuous steps in autophagy including induc-
tion, vesicle nucleation, vesicle elongation and fusion of
autophagosome with the lysosome (see Fig. 2). A central inhibitor
of autophagy is the serine/threonine protein kinase mTOR (mech-
anistic target of rapamycin). mTOR negatively regulates autophagy
by suppressing the function of the kinases ULK1 or ULK2. ULKs
form a complex that contains FIP200 and ATG13 and is involved
in autophagy induction. ULK1 may initiate autophagy by phospho-
rylating Beclin-1, then enhancing the activity of the ATG14L-
containing VPS34 complexes [49]. Beclin-1 is also phosphorylated
by death-associated protein kinase (DAPK) on its BH3 domain
[50,51], which induces autophagy initiation by its release from
its inhibitory binding partner Bcl-2. The Bcl-XL/Bcl-2 complex
binds Beclin 1 via its BH3 domain to inhibit autophagy [52,53].

Upon autophagy induction, mTOR is inactivated, releasing ULKs
from the inhibitory effect and subsequent autophagy induction
[54]. Downstream to the ULK complex, the class III phosphatidyli-
nositol 3-kinase (PI3K) complex functions to produce PI3P (phos-
phatidylinositol 3-phosphate) that regulates vesicle nucleation
and subsequent recruitment of other factors such as WIPI1-2,
ATG2 and DFCP1 that are involved in vesicle elongation. This com-
plex is composed of the Vps34, Vps15/p150, Atg14 and Beclin 1
[55].
Induc�on Vesicle Nuclea�on Vesicle Elonga�o

mTORC1 

ATG13 FIP200 

ULK1
Vps34Beclin-1 

ATG14 

IRGM 

NOD2 LC3 PE

GABARAP P

ATG7 ATG10 + 

E1 E2

p62 NDP52 

NBR1 OPTN

Autophagy Receptor

Phagophores

ATG2

Vps15

Fig. 2. Autophagy stages and main proteins. Genes related to ASD and IBD that we hav
vesicle produced at each stage is depicted as text on the arrows connecting the stages.
PI3K complex recruits two ubiquitin-like (Ubl) conjugation sys-
tems, Atg12–Atg5-Atg16 and LC3–PE (phosphatidylethanolamine),
to the phagophore (initial sequestering compartment that expands
into an autophagosome), and those complexes play an essential
role in regulating the membrane elongation and expansion of the
forming autophagosome [56]. In humans, LC3 is represented by
two subfamilies [45]—the LC3-subfamily (LC3A, LC3B, LC3C) and
the GABARAP subfamily (GABARAP, GABARAPL1, GABARAPL2,
GATE-16). Both LC3 and the GABARAP subfamilies are essential
for autophagy and were implicated in the membrane fusion of
the autophagosomes as reviewed in [45]. During membrane elon-
gation process, GABARAPs and LC3s are cleaved by ATG4 subfamily
of enzymes into GABARAPL1-I, GABARAP-I, GABARAPL2-I and LC3-I
which are conjugated to phospholipids by Atg7 and Atg3 to pro-
duce the phospholipid-linked forms GABARAPL1-II, GABARAP-II,
GABARAPL2-II and LC3-II. LC3-II is required for elongation of
autophagosomes, whereas GABARAP-II, GABARAPL1-II and
GABARAPL2-II are required for later stages of [57] autophagosomes
maturation.

Lastly, the autophagosome fuses with the lysosome and the
cargo is degraded. Autophagosome-lysosome fusion is mediated
by the same machinery that is involved in homotypic vacuole
membrane fusion [58].

Selectivity of autophagy is controlled by autophagy receptors
such as p62, NBR1, NDP52, OPTN, TOLLIP, Tax1BP1 and many
others to specifically degrade intracellular ubiquitinated aggre-
gates, bacteria, specific organelles or nucleic acids [10]. Specifically,
IRGM which binds selective-immunity receptors was recently
shown to regulate the formation of autophagy initiation complexes
by interaction with ULK1 and Beclin 1 to enhance their co-
assembly [44]. NOD2 was observed to enhance IRGM’s interaction
with ULK1 and Beclin1 [44]. IRGM [44] and NOD2 [39] form a
complex with ATG16L1, while NOD2 translocates ATG16L1 to the
cell membrane at the site of bacterial entry to induce selective
autophagy. CALCOCO2/NDP52 [59] is an autophagy-selective
receptor that regulates pathogen targeting to autophagosomes
and subsequently ensures its degradation by regulating pathogen-
containing autophagosome maturation and fusion with lysosomes.
3.2.2. SPN model
Our computational SPN model comprised more than 100 net

places, 80 transitions and 200 arcs. All net places, transitions and
their biological meaning are presented in supplemental Table S1
and S2. Fig. 3 depicts the top-level SPN, corresponding to the
autophagy stages presented in Fig. 2, which are highlighted. The
‘‘Induction” stage is further expanded in subnet ‘‘Initiation” (see
Fig. 4). ‘‘Vesicle Nucleation” stages are followed by the ‘‘Vesicle
n Matura�on (Fusion)

ATG5 ATG12 

ATG16L1 

E
ATG3 ATG7+ 

E3

E1E2
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s
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complexes 
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e perturbed in silico are highlighted with dashed lines. The state of the autophagy
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Elongation” stage, which is further expanded in the ‘‘Autophago
some_Elongation” subnet (see Fig. 5).

After constructing the model and before utilizing it for further
analysis, we formally validated the model to be a CTI, fully covered
by one minimal T-invariant (see Section 2 and supplemental
Table S4). We also conducted P-invariants analysis and calculated
five P-invariants (see supplemental Table S3). As explained in Sec-
tion 2, due to the input transitions used to input tokens continu-
ously into the net, we did not expect the SPN to be fully covered
by P-invariants.
3.2.3. The in silico effects of ASD and IBD mutations
We used the SPN autophagy model simulation to analyze the

effects of LoF mutations of the IBD risk genes, ATG16L1 [27–31],
IRGM [27–29,32,33], NOD2 [27], ULK1 [34], NDP52/CALCOCO2
[36,37], ATG2A [35] and GABARAPL1 [35]. The latter two were
related to Crohn’s disease with granuloma [35]. In addition, we
tested the ASD risk genes – ATG7 and ND52/CALCOCO2 [15]. These
genes are highlighted by dashed rectangles in Fig. 2 and by dashed
circles in the corresponding places in the SPN model in Figs. 3–5.
Places that we analyzed in Fig. 6 are highlighted in Figs. 3–5 as
well. The results of validation and prediction related to these genes
are described below.
3.2.4. Dynamic model validation
Our simulation results are shown in Fig. 6. Table 1 summarizes

these in silico results (see column 4) and their correspondence to
observations (see columns 3 and 5). We also summarize the
knowledge we modeled for each gene (see column 1). We summa-
rized observed effects on autophagy and on disease phenotype of
the risk gene/locus (see column 3).
Fig. 3. Top-level view of the autophagy model. The four autophagy stages from Fig. 2 ar
further expanded in subnet ‘‘Initiation” (see Fig. 4). The ‘‘Vesicle Nucleation” stage i
‘‘Autophagosome_Elongation” subnet (see Fig. 5). The process starts in the top middle
transitions. Two concentric rectangles depict a macro transition, which represents a subn
at initiating places (e.g., proteins) with tokens (e.g., quantities). Gray circles represent logi
in Fig. 6 are highlighted, such as Phagophore_formed, as well as the mutations that we t
a_c/active_c – active as condition; AminoAcids_2 – Amino acids as condition 2; c – as co
ATG7 and ATG16L1 are thought to have a pivotal role in the
general autophagy process, while the receptors NOD52/CALCOCO2,
IRGM, NOD2 were shown to participate in selective autophagy to
eliminate cytosolic pathogens [39,44,59,62,63]. That is, our analy-
sis regarding these receptors pertains to the effects on selective
immune-related autophagy rather than on general autophagy.

3.3. Step 3. Predictions generation

Next we focused on detecting genes/proteins with similar sim-
ulation profiles. Fig. 7 shows the results of hierarchical clustering
of the differences between simulations (see Section 2). As
expected, the clustering shows that a WT (wild type) simulation
is a distinct group from the perturbed simulations. Between them,
ATG2, ULK1, NOD2 and IRGM form one close group and GABAR-
APL1, NDP52, ATG16L1 and ATG7 form a second group. Within this
second group (highlighted by dashed line), which is of interest
because it includes both ASD and IBD risk genes, ATG16L1 and
ATG7 genes show similar kinetic profiles (see Fig. 7). Based on
the strongest similarity between ATG7 and ATG16L1, we predict
that ATG16L1 (an IBD gene) may induce ASD when implicated in
neurons; and ATG7 (an ASD gene) may induce IBD when impli-
cated in the intestine epithelium.

We explored the literature and found results supporting our
prediction that the ASD risk gene ATG7 has similar phenotypic
effects to ATG16L1 in the intestine. ATG16L1 is the most studied
susceptibility gene of IBD [27–31], and the work in [38] showed
that the IBD risk locus in knock-in mice, Atg16L1T300A, affects
intestinal phenotype and exhibit morphological defects in Paneth
and goblet cells. The work in [69] showed that mice with intestinal
epithelial deletion of Atg7 affect the intestinal phenotype. This phe-
notype included reduced size of granules and decreased levels of
e highlighted. The ‘‘Induction” stage and part of the ‘‘Vesicle Nucleation” stage are
s followed by the ‘‘Vesicle Elongation” stage, which is further expanded in the
and ends with the ‘‘Maturation” stage. Circles depict places and rectangles depict
et. We highlighted the rectangles that represent input and output transitions, aimed
cal places that participate also in other subnets. Places corresponding to our analysis
ested highlighted by dashed circles. Shorthand used in names of places in Figs. 3–5:
ndition; d/D – dephosphorylated; p/phos – phosphorylated; P_81 – dummy place.



Fig. 4. The ‘‘Initiation” subnet presenting the ‘‘Induction” stage and part of the ‘‘Vesicle Nucleation” stage. The blue colored place and arc represent the border connection,
linking the subnet to the upper level net. The genes that were analyzed are highlighted by dashed circles. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Vesicle 
Elongation

Fig. 5. Autophagosome_Elongation subnet presenting the ‘‘Vesicle Elongation” stage. The blue colored places and arcs represent the border connection, linking the subnet to
the upper level net. The genes that were analyzed are highlighted by dashed circles. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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lysozyme in Paneth cells. Also, mice with Atg7 deficiency in intesti-
nal epithelial cells develop more severe colitis upon infection with
Citrobacter rodentium and reduced clearance of the pathogen [70].

Our results also predict similar effects in the NDP52/CALCOCO2
gene classified in the second group (see Fig. 7), which is shown to
be susceptible in both ASD [15] and in IBD [36,37].

We also predict that perturbation of GABARAPL1 (an IBD risk
gene), which is classified in the second group in Fig. 7, may also
cause ASD, when implicated in neurons. Indeed GABARAPL1 has
a role in neuronal signal transmission and was suggested to play
a role in neurodegenerative diseases as reviewed in [45].
4. Discussion

Our novel approach leverages clinically-observed comorbidities
to improve our understanding of the underlying mechanisms of
complex disorders. It uses stochastic molecular level modeling to
examine how genes implicated in a specific complex disease may
impact its comorbid condition(s) and vice versa. The application
of our approach to the ASD-IBD comorbidity has identified several
genes previously implicated in one of the disorders that might
affect both phenotypes or result in phenotypes shared in both dis-
eases. Specifically, we predict that two IBD-implicated genes
(ATG16L1 and GABARAPL1) may induce the ASD phenotype, and
that one ASD-implicated gene (ATG7) may induce the IBD pheno-
type. We found support for our predictions regarding ATG7
[69,70] and GABARAPL1 [45]. Direct genomic and functional exper-
iments can now test these predictions regarding the molecular
basis of ASD and IBD.

The close similarity of the in silico profiles of ATG16L1 and ATG7
(see Fig. 7) can be explained by the tight connectivity of these
genes. ATG16L1 and ATG7 are both involved in the elongation
phase of autophagy during which the autophagosomes are formed
(see Table 1, column1). Although ATG7 exhibits earlier roles than
ATG16L1 during elongation, our model predicts that it affects
autophagy products in a similar manner as the latter. GABARAPL1
and NDP52, which also cluster together with ATG16L1 and ATG7,
are involved in later stages of the elongation phase and autophago-
some maturation (see Table 1, column1). Another set of related
genes, IRGM and NOD2, form a complex during autophagy initia-
tion phase and are classified together. They are clustered with
ULK1 and ATG2, which both affects the earlier stages of initiation
and induction of autophagy (see Table 1, column1).

The strength of our approach is that by being comparative and
qualitative, it is less sensitive to the magnitude of molecular quan-
tities and rates used. This is necessary since these data (i.e., the
exact coefficients, quantities and rate of the molecular reactions)
are usually unknown for such complex biological systems.

Our model can be further used to test kinetics of other mole-
cules and complexes of interest or effects of other mutations (or
their combination) that may be present in real patients. We note
that the granularity of our model is at the gene level and does
not include specification of specific domains and risk loci. Future
work may extend the granularity of our model and predict the
effects of specific risk loci related to specific domains, when such
data is available.

Our approach should be applicable to any pair of comorbid dis-
eases that share genetic similarity, i.e., overlapping pathobiological
mechanisms. Although our approach can handle incomplete
knowledge, sufficient mechanistic knowledge about the biological
process at hand and the genes to be tested is required. In addition,
dedicated repositories of predefined computational models of bio-
logical processes can be used to ease the utilization of our
approach. For example, the BioModels database (http://www.ebi.
ac.uk/biomodels/) includes more than 140,000 freely available,
manually curated and automatically generated models, as well as
software tools for automated generation of mathematical models,
derived from known pathway DBs (e.g., KEGG, BioCarta). The mod-
els are provided in the standard SBML format (Systems Biology
Markup Language) [71], which may be imported into the Snoopy
tool [46] that we have used in this work.

Although sharing high heritability, ASD and IBD are assumed to
result from a complex interplay between genetic and environmen-
tal factors. Indeed, [38] showed that knock-down of the
Atg16L1T300A IBD risk locus affected the intestine phenotype but
did not evolve into spontaneous intestinal inflammation. Never-
theless, a combined genetic-environmental approach [72] shows
that the Atg16L1 susceptibility allele associated with viral exposure
induces IBD. That is, while a solely genetic approach was not suffi-
cient to trigger IBD [38], the combined genetic-environmental
approach did. A related line of investigation [73] suggests that
treating the gut-microbiota may improve the clinical state of chil-
dren with ASD.

In summary, our study implicates genes, some for the first time,
whose variants affect susceptibility to ASD and IBD. The study also
explores the common mechanisms affected by the genetics of
comorbid diseases. Finally, the study makes testable predictions
regarding the common molecular behavior of the shared
comorbidities.
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